a2 United States Patent

Saraswati

US009367465B2

US 9,367,465 B2
Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR IMPROVING
MEMORY ACCESS PERFORMANCE

(75) Inventor: Sujoy Saraswati, Karnataka (IN)

(73) Assignee: Hewlett Packard Enterprise

Development LP, Houston, TX (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2560 days.

(21) Appl. No.: 12/101,792

(22) Filed: Apr. 11, 2008
(65) Prior Publication Data
US 2008/0256524 A1 Oct. 16, 2008
(30) Foreign Application Priority Data
Apr. 12,2007 (IN) coovvervireereccceeen 784/CHE/2007
(51) Imt.ClL
GO6F 9/45 (2006.01)
GO6F 12/00 (2006.01)
GO6F 12/08 (2016.01)
(52) US.CL
CPC GO6F 12/0862 (2013.01); GOG6F 8/443

(2013.01); GO6F 2212/6028 (2013.01)
(58) Field of Classification Search
CPC ..o GOG6F 12/0862; GOGF 8/443
USPC oo 717/140-161; 711/137
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,724,613 A * 3/1998 Wszolek GO6F 13/1631
710/100

6,119,222 A * 9/2000 Shiell GOG6F 9/3802
711/E12.057

6,311,260 B1* 10/2001 Stone GOG6F 9/383
711/137

6,421,826 B1* 7/2002 Koscheetal. 717/161
6,564,313 B1* 5/2003 Kashyap GO6F 9/381
711/137

7,111,125 B2* 9/2006 Hooker GO6F 9/30032
711/137

7,177,985 B1* 2/2007 Diefendorff GO6F 12/0862
711/118

2003/0145314 Al* 7/2003 Nguyenetal. 717/158
2006/0101226 Al* 5/2006 Benhase GO6F 12/1081
711/203

2012/0166733 Al* 6/2012 Cherukuri GO6F 12/0862
711/137

2013/0013867 Al* 1/2013 Manne GO6F 12/0862
711/137

OTHER PUBLICATIONS

“Daeyeon”;“Adaptive softawre prefetching in scalable multiproces-
sors using cache information”;*Jan. 12, 20017;“elsevier”;*23
Pages”.*

* cited by examiner

Primary Examiner — Wei Zhen

Assistant Examiner — Brahim Bourzik

(74) Attorney, Agent, or Firm — Brooks, Cameron &
Huebsch, PLLC

(57) ABSTRACT

The present invention relates to a computing system which
includes a processor and a memory. It also includes a memory
access optimizer which is arranged to affect memory access
of'a program during runtime execution of the software. The
program includes a plurality of application elements, each
comprising a text field containing a text section, and a
memory access field. The memory access optimizer is
arranged to implement memory access data in the memory
access field in order to affect memory access of the applica-
tion element. The text section is unchanged by the memory
access data implementation.

10 Claims, 3 Drawing Sheets

30
Execute the application
311
e

Monitor the application with IPF PMU |‘—
[

Memory load with
high letency?
312
No
TLB access with
high latency?
314
No
High OzQ pressure?

313
Change data
value to /
enable |
comesponding
prefetch

Change data a5

Yes | value fo disable ¢/
carresponding i

prefetch

Change data 317

value to disable

fchange hintfor [
comresponding
profetch

U.S. Patent Jun. 14,2016 Sheet 1 of 3 US 9,367,465 B2

NETWORK
102 \ A 110 / 103
\ / /wa
PROCESSOR MEMORY \

| — 104 vDU

P

/ BUS V 105

100

KEYBOAR
O

Fig. 1

U.S. Patent Jun. 14,2016 Sheet 2 of 3 US 9,367,465 B2

201
Application source code 4-/

Compile
Y
Application binary or library 203
Example data: /
Data value (initialized) for prefetch 1]

Data value (inittalized) for prefetch 2

Data value (initialized) for prefetch N

/’ Example text;

200 202

If data value indicates prefeich enable

Execute prefetch instruction /
Else if data value indicates prefetch with hint enabled <+

Execute prefetch with hint
Else

Prefetch is disabled

Fig. 2

U.S. Patent Jun. 14,2016 Sheet 3 of 3 US 9,367,465 B2

310
Execute the application 4/

l [311

Monitor the application with IPF PMU

&
-
o
I

h 4

313
Change data
Memory load with value to /
high latency? enable il
312 corresponding
prefetch
315

TLB access with
high latency?

Change data

value to disable 4(/
corresponding ™
prefetch

314

Change data 317

value to disable

/change hintfor |
corresponding
316 prefetch

High OzQ pressure?

Fig. 3

US 9,367,465 B2

1
METHOD AND SYSTEM FOR IMPROVING
MEMORY ACCESS PERFORMANCE

RELATED APPLICATIONS

This patent application claims priority to Indian patent
application serial no. 784/CHE/2007, having title “A Method
and System for Improving Memory Access Performance”,
filed on 12 Apr. 2007 in India, commonly assigned herewith,
and hereby incorporated by reference.

BACKGROUND OF THE INVENTION

A parameter of processes running on a computing system
is memory access performance. Programs include instruc-
tions and data. Both the instructions and data must be fetched
from memory. The amount of time required to access data
from memory by a program has an important effect on the
performance of the program as well as the system, particu-
larly where the system runs many processes. The amount of
time required to access data from memory has a strong depen-
dency on how and when the memory is accessed (the memory
access pattern).

It is difficult to predict memory access patterns of a pro-
gram during compilation, so the compiler cannot generate the
most optimal access pattern in most cases.

It is known to provide “dynamic optimizers” which moni-
tor the performance of a program at runtime and adjust the
program in an attempt to improve memory access perfor-
mance. The compiler generates application elements contain-
ing prefetch instructions in active or inactive form. The
dynamic optimizer collects memory access related data for
the software at runtime and activates, deactivates or modifies
the prefetch instructions generated by the compiler in order to
improve memory access patterns. This approach takes the
runtime performance behaviour into account. However, the
application elements need to be updated at runtime to achieve
this. The prefetch instructions reside in a text section of the
application elements, so any update involves writing to the
text section.

By the term “application element” we mean a portion of a
program, wherein the program is made up of a plurality of
application elements. An application element includes
instructions for the operation of the program.

Optimizing memory access at runtime by writing to the text
field of an application element presents problems. In particu-
lar, where the program is associated with a library (e.g. in
operating systems based on libraries and with support for
copy-on-write) as soon as a write operation takes place on a
text, a private copy is created. Shared libraries are usually
mapped shared for application elements, so that the text sec-
tion can be shared across processes. If the text has to be
mapped private or it is mapped private on a write operation,
this will have an affect on performance. More private pages
increase pressure on the swap device. Moreover, if an update
has to happen on the shared library memory access, irrespec-
tive of processes, each process has to update the private copy
of'the text in order to implement the change. Further, updating
the text would require super user privileges for the dynamic
optimizer to succeed (due to security reasons). Alternatively,
a privilege instruction could be utilised to update the shared
text. Although this solution would not require the text to be
mapped private, it would require super user privileges and
might need locks to safely update the text page. These poten-
tial problems make the dynamic optimizer approach slower.

10

15

20

25

30

35

40

45

50

55

60

65

2

Requiring updating of the text section of a software element
may therefore inhibit the effectiveness of the dynamic opti-
mizer.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will
become apparent from the following description of embodi-
ments thereof, by way of example only, with reference to the
accompanying drawings, in which:

FIG. 1 is a diagram of a computing system in accordance
with an embodiment of the present invention;

FIG. 2 is a diagram illustrating a layout of an application
element generated on compilation, in accordance with an
embodiment of the present invention; and

FIG. 3 is a flow diagram illustrating operation of a dynamic
optimizer in accordance with an embodiment of the present
invention, during runtime.

DETAILED DESCRIPTION OF EMBODIMENTS

There will be provided a computing system for improving
memory access patterns of a process implemented on a com-
puter, such as, for example, a software program.

In one embodiment, the computing system comprises a
processor, a memory, a memory access optimizer arranged to
affect memory access patterns of a program during runtime
execution ofthe program, the program including a plurality of
application elements comprising a text field containing a text
section, and a memory access field, the memory access opti-
mizer being arranged to implement memory access data in the
memory access field in order to affect memory access of the
application element, whereby the text section being
unchanged by the memory access data implementation.

In a further embodiment, the computing system comprises
aprocessor, amemory, and a compiler arranged to implement
memory access options in a program including a plurality of
application elements, the memory access options being
arranged to affect memory access patterns of the program
during runtime, and the compiler being arranged to provide a
memory access field in the application elements, wherein a
value of a data in the memory access field is arranged to
implement the memory access options.

In a further embodiment, the computing system comprises
a processor, a memory, a program arranged for execution on
the computing system, the program including a plurality of
application elements comprising a text field having a text
section and a memory access field having memory access
data, the memory access data being arranged to affect
memory access of the application element when the program
is run.

There will also be provided a method for improving the
memory access pattern of a process implemented on a com-
puter, such as, for example, a software program.

In one embodiment the method comprises a method of
adjusting a program in order to improve a memory access
pattern of the program, the program comprising a plurality of
application elements comprising a text field having a text
section, and a memory access field, the method comprising
the steps of implementing memory access data in the memory
access field in order to affect memory access of the applica-
tion element, the text section being unchanged by the memory
access data implementation.

In a further embodiment the method comprises a method of
compiling a program, wherein the program includes a plural-
ity of application elements comprising a text field containing
a text section, the method comprising the steps of writing

US 9,367,465 B2

3

memory access options into the application elements for
affecting memory access patterns of the program during runt-
ime, and providing a memory access field for the application
element, the value of a datum in the memory access field
being arranged to implement memory access options.

In a further embodiment, the method comprises a method
of executing an application element of a program at runtime,
the application element comprising a text field containing a
text section, and a memory access field, the memory access
field containing memory access data arranged to affect
memory access of the application element during runtime, the
method comprising the steps of running the application ele-
ment and controlling memory access of the application ele-
ment in accordance with the memory access data.

In a further embodiment the method comprises, in a com-
puting system having a processor and a memory, a method of
affecting memory access patterns of a program during execu-
tion, comprising the step of implementing a memory access
data of an application element of the program the memory
access data not being contained in a text field of the applica-
tion element, the memory access datum being arranged to
affect memory access of the application element.

In a further embodiment the method comprises, in a com-
puting system having a processor and a memory, a method of
affecting memory access patterns of a program during execu-
tion, comprising the step of providing a plurality of memory
access options within an application element of the program,
the memory access options being selectable to affect memory
access of the application element.

There will also be provided a data structure for an applica-
tion element.

In one embodiment the data structure for an application
element comprises a text section for containing instructions,
and a memory access field, the memory access field being
arranged to contain memory access data for affecting memory
access of the application element during runtime execution.

There will also be provided computer programs including
instructions for controlling a computer to implement one or
more of the method embodiments discussed above.

FIG. 1 is a schematic block diagram of an example com-
puting system which may be utilised for implementation of a
method and system in accordance with an embodiment of the
present invention.

The illustrated computing system comprises a computer
100 which includes a processor 102 and memory 103. The
processor 102 is arranged to process program instructions and
data in a known manner. Memory 103 is arranged to store
programme instructions and data also in a known manner.
Processor 102 may constitute one or more processing means,
such as integrated circuit processors. The memory 103 may
comprise any known memory architecture and may include
hard disk, IC memory (ROM, PROM, RAM, etc), floppy
disks and other types of additional memory such as CD ROM,
and any other type of memory.

A BUS 104 is provided for communication between the
processor 102 and memory 103 and also communication with
external components. In this case the external components
include a user interface 105. The user interface 105 includes
a visual display unit 106 for displaying information to a user.
The VDU 106 may display information in graphical format or
any other format depending upon the program instructions
being processed by processor.

The user interface 105 also includes user input means 107
which in this example include a keyboard 108 (which in this
example may be a standard QWERTY keyboard) and a mouse
109. The mouse 109 may be used to manipulate a graphical
user interface (GUI) if a GUI is provided by software running

35

40

45

4

on the computer. A network connection 110 is also provided
for connecting to a network which may include a communi-
cation network and other computers/computing systems.

The computing system of FIG. 1 may be implemented by
any known type of computing hardware such as, for example,
a PC, by anumber of networked PCs if required to implement
a system of this embodiment, by a “mainframe architecture”
including a remote computer and user workstations con-
nected to the remote computer, by a client-server architecture,
including a client computer accessing a server computer over
a network, or by any other computing architecture.

The computing system need not be connected to a network
if this is not required by the software or computer architec-
ture.

In this embodiment the computing system may be config-
ured for compiling programs to run on target computing
systems (eg end user computing systems) and includes a
compiler, in this embodiment in the form of software (not
shown). In accordance with an embodiment of the invention,
the computing system also includes a memory access opti-
mizer, also in the form of a software in this embodiment for
monitoring operation of a compiled program during runtime
and improving memory access of the program in accordance
with an embodiment of the present invention.

Further, in this embodiment, the computer system has
access to a program library (not shown) over the network,
where applications may be stored and shared, for facilitating
building of programs.

The computing system of this embodiment is also config-
ured with IPF (Itanium Processor Family) architecture and
includes a Performance Monitoring Unit (PMU), Data Event
Address Register (DEAR), and IP EAR of a Montecito pro-
cessor. It should be noted that the present invention is not
limited for use with IPF architecture, but may also be applied
with other computer architectures.

Programs compiled and tested on this computing system
may then be run on computing systems in accordance with
further embodiments of the present invention, for example
end user PCs or other types of end user computing system for
running programs.

As discussed above, the computing system includes a com-
piler for compiling source code prepared by the programmer
to run on a target operating system. In this embodiment of the
invention, the compiler is arranged to incorporate memory
access options within the text section of application elements
making up the program and also provide a data space for
containing a value able to control the selection of the memory
access options.

As discussed above, the computing system also includes a
memory access optimizer, in this embodiment being termed a
dynamic optimizer, which is arranged to monitor operation of
the compiled program during runtime and affect the memory
access patterns of the program by implementing memory
access data in the data space provided in the compiled appli-
cation elements.

In more detail, the dynamic optimizer monitors the
memory access performance of the software during runtime
and determines what improvements need to be made to the
memory access pattern. For example, in one embodiment the
dynamic optimizer would use the Performance Monitoring
Unit (PMU) of the IPF architecture to obtain memory related
data.

The dynamic optimizer utilises the Data Event Address
Register (DEAR) to find out loads with high latency and uses
the IP-EAR of the Montecito processor to find out the hot
stores. The IP-EAR can also be used to find out memory
traffic indicators such as excessive L1 fill traffic, .2 OzQ

US 9,367,465 B2

5

over-subscription, and .2 bank conflicts. The DTLB misses
can also be captured using the DEAR and may be used in
optimizing memory access patterns. All these data may be
used to identify poorly behaving memory access instructions.

In accordance with this embodiment, in order to improve
memory access, the dynamic optimizer affects the memory
access data in the memory access field of the application
elements in order to improve the memory access behaviour.
For example, for stores with high latency, the dynamic opti-
mizer enables a corresponding prefetch instruction in the
relevant application element(s) by inputting or changing the
memory access data in the memory access field of the appli-
cation element(s). For heavy memory traffic, the dynamic
optimizer would suitably change the prefetch hint or disable
a prefetch to reduce the traffic to memory.

In more detail, for every memory access control instruction
in an application element text, such as every prefetch instruc-
tion that can be potentially enabled/disabled or modified by
the dynamic optimizer, the compiler generates data (could be
abyte) in the memory access field. The value ofthe data in the
memory access field will enable/disable the prefetches. The
dynamic optimizer writes to this field to enable/disable the
prefetches. The code generated by the compiler may be like—

1d4 rx, [ry];//ry contains the address to the memory access
field.

Cmp4-eq px, py=ry+0

(px) lfetch.nt1 [rz],c//active prefetch

(py) add rz,c,rz//prefctch inactive, only the post increment
happens.

The application element then either executes the lfetch
instruction or the corresponding add instruction for post
incrementing prefetches. For non-post incrementing
prefetches, we would not need the add instruction. If the value
of the data is 1, the cmp instruction would set predicate
register px to 1 and py to 0. In effect, the lfetch would be
executed and the add instruction would be predicated off. On
the other hand, a 0 value of the data would result in the Ifetch
being predicated off and the add to execute effectively. This is
how the data value guides the execution path of the prefetch
instructions.

The extra instructions may take 2 cycles (if the dataisin L1
cache, the load should take a cycle and the cmp should take
another cycle) for each such prefetch. The load and stores are
of high latency, so the prefetch also requires long latency to
access the data from memory. This would mean that the
increase of 2 cycles for the approach of this embodiment is
negligible compared to the prefetch latency.

For prefetch hint changing, the optimizer writes different
values to the same memory access file. The compiler to gen-
erate an extra instruction to compare the data to different
values. Also, the necessary lfetch instructions (active, inac-
tive or modified) are generated in duplicate, although only
one form of the instruction will be executed at runtime. The
compiler might generate the Ifetch with the most suitable hint.
After analyzing the code, if the compiler finds that a prefetch
would not be a candidate to heavy memory traffic, it can
restrict itselfin generating only the active and inactive form of
the prefetch. The hint modification may be used judiciously,
also the extra instructions in the case of heavy memory traffic
may actually widen the gap between the memory instructions,
reducing the rate of memory traffic.

The compiler generates extra information in the annotation
section of the application element. The annotation section
may contain data locations corresponding to a prefetch. Also,
the annotation section would suggest the values needed for
indicating prefetch enable, disable or hint modification. For

5

15

20

[

5

30

35

40

45

50

55

60

65

6

example, a value of 0 might indicate disabled prefetch, 1
would indicate enables prefetch, 2 might mean a prefetch
with ntl hint.

The Benefits of the approach of this embodiment are—

All the dynamic optimizer needs to do is to update the data
field. The annotation section can contain the address of
the data field. This avoids any write to text, so text can be
mapped and shared as usual.

No need to analyse the annotations and decode/encode
instructions from the text page, all that the optimizer
needs to do is to update the data field with proper values.

Thread-safety issues are easier to handle. Any thread read-
ing this data byte can either read a value (depending on
race condition with the optimizer writing to the data
field), but at worst one iteration of optimal prefetch
would be missed and the next execution of the prefetch
would be correct.

These extra instructions have to be executed in the program
element. The load instruction for the data value should
not take much time as after the first load, it should be in
the cache.

Referring to FIG. 2, a schematic diagram of an application
element in accordance with an embodiment of the present
invention, generally designated by reference numeral 200 is
illustrated. The application element has been compiled by the
compiler from application source code 201. The application
element comprises a data structure including text 202 and a
memory access field for containing data values 203. Data
values, in accordance with this embodiment, are for control of
memory access during run time of the program. For example
data are illustrated in F1G. 2, designated by reference numeral
203. The compiler in this embodiment provides the memory
access field and also initializes a data value. This data value
may then be changed (or left as it is) by the optimizer. When
the data value is initialized by the compiler, it will be initial-
ized to be enabled or disabled, for example, as a default
condition. FIG. 2 merely gives examples of the type of data
that may be included.

FIG. 3 is a flow chart illustrating execution of a program at
runtime and implementation of the memory access optimizer
to improve the memory access patterns. At step 310, the
program is run. The dynamic optimizer monitors the execu-
tion of the application, reference numeral 311, utilizing such
facilities as the IPF PMU and others. If the memory load is
determined to have high latency (Block 312) then the data
value in the memory access field is input or changed to enable
a corresponding prefetch (Block 313).

Conversely, if a TLB access has high latency (Block 314)
then the data value is changed or entered to disable the cor-
responding prefetch (Block 315). If high OzQ pressure is
detected (Block 316) then the data value is input or changed
to disable/change the hint for the corresponding prefetch
(Block 317).

It will be appreciated that memory access may be affected
in other ways and in response to other circumstances detected
by the memory optimizer, and the circumstances are not
limited to only those disclosed with reference to FIG. 3.

In the above embodiment, the prefetch instructions are
enabled or disabled in order to affect the memory access
pattern. The invention is not limited to manipulating prefetch
instructions to affect memory access patterns. The memory
access field may include data effecting changes to other
parameters or instructions which affect memory access. For
example, in a further embodiment, the data value may affect
the selection of a routine to use in the next step of program
execution. For example, the data may decide that a different
routine in a branch decision should be used because of a

US 9,367,465 B2

7

preferred memory access pattern. In this case, the dynamic
optimizer would monitor the branch direction and if the result
is in favour of one direction of a branch, the optimizer
changes the data value for the appropriate data field. The data
field could be generated by a compiler and the data value can
be used to influence the default branch direction.

An advantage of the above embodiments of the invention is
that there is no need to write to the text section of the appli-
cation element in order to control memory access. This
reduces side effects like increased pressure on swap space due
to private text pages in software libraries. Further, the
dynamic optimizer does not require super user privileges to
effectively improve the memory access behaviour of the
application at run time.

The foregoing description of the exemplary embodiments
is provided to enable any person skilled in the art to make or
use the present invention. While the invention has been
described with respect to particular illustrated embodiments,
various modifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the invention. It is there-
fore desired that the present embodiments be considered in all
respects as illustrative and not restrictive. Accordingly, the
present invention is not intended to be limited to the embodi-
ments described above but is to be accorded the widest scope
consistent with the principles and novel features disclosed
herein.

What is claimed is:

1. A computing system comprising:

a processor;

amemory;

a memory access optimizer configured to affect memory
access of a program during runtime execution of the
program;

the program including a plurality of application elements
comprising a text field containing a text section, and a
memory access field, the memory access optimizer con-
figured to implement memory access data in the memory
access field in order to affect memory access of the
application element, whereby the memory access opti-
mizer is configured to prevent change to the text section
by the memory access data implementation.

2. A computing system in accordance with claim 1,
wherein, the memory access data is arranged to control a
prefetch instruction for affecting a prefetch of data from
memory.

3. A computing system in accordance with claim 1,
wherein the memory access data is arranged to control selec-
tion of a program routine for execution.

4. A computing system in accordance with claim 1, further
comprising:

a compiler arranged to implement memory access options

within a program including a plurality of application
elements, the memory access options being arranged to

10

15

20

25

30

35

40

45

50

8

affect memory access patterns of the program during
runtime, and the compiler being arranged to provide a
memory access field in the application elements,
wherein the value of a datum in the memory access field
is arranged to implement the memory access options.

5. A computing system in accordance with claim 4,
wherein the memory access options include an instruction for
causing prefetch of data from memory.

6. A computing system in accordance with claim 4,
wherein the memory access options include an instruction for
selection of a program routine.

7. A method of compiling a computer program, wherein a
computer has instructions stored in non-transitory memory
executable by a processor and the computer program includes
a plurality of application elements comprising a text field
containing a text section, the method comprising:

writing memory access options into the application ele-

ments for affecting memory access patterns of the com-
puter program during runtime

providing a memory access field for the application ele-

ment(s), wherein the value of a datum in the memory
access field is arranged to implement memory access
options; and

implementing memory access in the memory access field

in order to affect memory access of the application ele-
ments, wherein implementing the memory access in the
memory access field is performed in a manner to prevent
change to the text section while implementing memory
access in the memory access field.

8. A method in accordance with claim 7, wherein the
memory access options include instructions for causing a
prefetch of data from memory.

9. A method in accordance with claim 7, wherein the
memory access options include an instruction for selection of
a program routine.

10. A computing device, including instruction stored in
non-transitory memory and executed by a processor to con-
trol compiling of a program the program having a plurality of
application elements including a text field and a text section,
where the instructions are executed to:

write memory access options into the application elements

for affecting memory access patterns of the computer
program during runtime;

provide a memory access field for the application element

(s), wherein a value of a datum in the memory access
field is configured to implement memory access options;
and

implement memory access in the memory access field in

order to affect memory access of the application ele-
ments, wherein implementing the memory access in the
memory access field is performed in a manner to prevent
change to the text section while implementing memory
access in the memory access field.

#* #* #* #* #*

